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Throughout, G denotes a (Hausdorff) topological group.

A (left) G-space is a continuous action a : G×X → X of G on
a topological space X. If X is compact, call it a G-flow.

Write g · x or gx for a(g, x) when a is understood.

If X and Y are G-spaces, a map ϕ : X → Y is a G-map if it is
continuous and G-equivariant.
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Cb(X) - continuous, bounded functions from X to C.

If f ∈ Cb(X) and g ∈ G, then f · g ∈ Cb(X) is defined
(f · g)(x) = f(gx).

Definition

If X is a G-space and f ∈ Cb(X), call f G-continuous if the
map λf : G→ Cb(X) given by λf (g) = f · g is norm continuous.

Write CG(X) for the algebra of G-continuous functions on X.

Fact: If X is a G-flow, then CG(X) = Cb(X).
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Definition

If X is a G-space, the maximal G-equivariant compactification
is a G-flow αG(X) and a G-map ιG,X : X → αG(X) such that if
Y is any G-flow and ϕ : X → Y is a G-map, then there is
ϕ̃ : αG(X)→ Y with ϕ = ϕ̃ ◦ ιG,X .

Equivalently, αG(X) is the Gelfand dual of CG(X).

While the map ιG,X need not be injective, in this talk we will
almost always be in situations where ιG,X is an embedding, in
which case we simply identify X ⊆ αG(X).
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Ultracoproducts: The construction

Fix an infinite set I and a collection {Xi : i ∈ I} of G-flows.

Form the G-space
⊔

i∈I Xi and its compactification
αG(

⊔
i∈I Xi). We have

⊔
i∈I Xi ⊆ αG(

⊔
i∈I Xi).

View βI as a motionless G-flow, i.e. gU = U for g ∈ G, U ∈ βI.

Obtain a G-map πI : αG(
⊔

i∈I Xi)→ βI.

Definition

Let U ∈ βI \ I. We define the ultracoproduct of {Xi : i ∈ I}
along U to be the G-flow ΣG

UXi := π−1I ({U}). If Xi
∼= X for

every i ∈ I, we call ΣG
UX the ultracopower of X along U .
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Equivalently, take CG(
⊔

i∈I Xi) and form ∼U , where given
e = (ei)i∈I , f = (fi)i∈I ∈ CG(X), we set

e ∼U f ⇔ ∀ ε > 0 {i ∈ I : |ei − fi| < ε} ∈ U .

Then ΣG
UXi is the Gelfand dual of CG(

⊔
i∈I Xi)/ ∼U .

When G is trivial and the Xi are just compact spaces, we
recover the ultracoproducts considered by Bankston.

In modern language, Bankston ultracoproducts are simply the
dual of ultraproducts of commutative C∗-algebras viewed as
continuous structures.
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Recently, Ben Yaacov and Goldbring have constructed
ultraproducts for continuous unitary representations of locally
compact groups. They provide two definitions.

Translating to the setting of G-flows, one of their definitions
coincides with ours. The other amounts to forming
Cb(

⊔
i∈I Xi)/ ∼U , then considering the subalgebra of

G-continuous functions and taking the Gelfand dual.

By a similar argument to theirs, these coincide when G is
locally compact, but in general, these can be different.

Andy Zucker Ultracoproducts of G-flows



Recently, Ben Yaacov and Goldbring have constructed
ultraproducts for continuous unitary representations of locally
compact groups. They provide two definitions.

Translating to the setting of G-flows, one of their definitions
coincides with ours. The other amounts to forming
Cb(

⊔
i∈I Xi)/ ∼U , then considering the subalgebra of

G-continuous functions and taking the Gelfand dual.

By a similar argument to theirs, these coincide when G is
locally compact, but in general, these can be different.

Andy Zucker Ultracoproducts of G-flows



Recently, Ben Yaacov and Goldbring have constructed
ultraproducts for continuous unitary representations of locally
compact groups. They provide two definitions.

Translating to the setting of G-flows, one of their definitions
coincides with ours. The other amounts to forming
Cb(

⊔
i∈I Xi)/ ∼U , then considering the subalgebra of

G-continuous functions and taking the Gelfand dual.

By a similar argument to theirs, these coincide when G is
locally compact, but in general, these can be different.

Andy Zucker Ultracoproducts of G-flows



Application: Spaces of subflows

If X is compact, write V(X) for the Vietoris hyperspace of
compact subspaces of X. A typical basic open neighborhood
has the form

{Y ∈ V(X) : Y ⊆ A0 ∪ · · · ∪An−1 and ∀i < n (Y ∩Ai 6= ∅)}

where A0, ..., An−1 are non-empty open subsets of X.

If X is a G-flow, write
SubG(X) = {Y ∈ V(X) : Y a G-subflow}.
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Interesting subspaces of SubG(X):

MinG(X) := {Y ∈ SubG(X) : Y is minimal}.

Recall that a G-flow is minimal if every orbit is dense.

TTG(X) := {Y ∈ SubG(X) : Y is top. trans.}.

Recall that a G-flow is topologically transitive if every open
G-invariant subspace is dense.
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Motivating question: How complicated are MinG(X) and
TTG(X) as subspaces of SubG(X)?

Fact: If {Xi : i ∈ I} are G-flows and U ∈ βI \ I, then
lim
i→U

Xi = ΣG
UXi in SubG(αG(

⊔
i∈I Xi)).

If X is a G-flow and (Xi)i∈I is a net of subflows of X with
limiXi = Y , then if U ∈ βI \ I is any cofinal ultrafilter, then
ΣG
UXi factors onto Y .

So to show that certain subspaces of SubG(X) are well-behaved,
it often suffices to show that the defining property is
well-behaved under ultraproducts.

Conversely, to show that certain subspaces are not well-behaved,
ultracoproducts can often serve as counterexamples.
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Definition (Basso-Z. 2021)

A topological group G is called CAP if for every G-flow X,
MinG(X) ⊆ SubG(X) is closed.

Equivalently, this occurs iff
⋃

MinG(X) := APG(X) ⊆ X is
closed. Thus CAP stands for “closed almost-periodic.”

Theorem (Bartošová-Z., Jahel-Z. 2018)

If G is Polish, then G is CAP iff the universal minimal flow
M(G) is metrizable.

Ultracoproducts simplify both directions of the argument.
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Theorem (Bartošová-Z., Jahel-Z. 2018)

If G is Polish, then G is CAP iff the universal minimal flow
M(G) is metrizable.

Ultracoproducts simplify both directions of the argument.

Andy Zucker Ultracoproducts of G-flows



Theorem (Z.)

If G is a Polish group with M(G) metrizable, then every
ultracopower of M(G) is isomorphic to M(G).

Conversely, if G is Polish and M(G) is not metrizable, then
there is U ∈ βN \ N such that the corresponding ultracopower is
non-metrizable.
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What about TTG(X) ⊆ SubG(X)?

Recall that a topological group G is Roelcke precompact if for
every open U 3 1G, there is a finite F ⊆ G with UFU = G.

Theorem (Z.)

For a topological group G, the following are equivalent:

G is Roelcke precompact.

For every G-flow X, TTG(X) ⊆ SubG(X) is closed.

While (1)⇒ (2) is easiest to prove directly, for (2)⇒ (1), one
constructs an ultracopower of the Samuel compactification of G
which is not topologically transitive.
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A new characterization of GPP Polish groups.

A Polish group G has the generic point property, or is GPP, if
M(G) has a comeager orbit.

Fact (Ben Yaacov, Melleray, Tsankov): If G is Polish and
M(G) is metrizable (i.e. G is CAP), then G is GPP.

Theorem (Basso-Z. 2023+)

Given a Polish group G, the following are equivalent.

G is GPP.

For any G-flow X and any Y ∈ MinG(X), Y contains a
unique minimal subflow.

For G = Aut(Q) and X = 2Q, the collection of subflows of X
containing a unique minimal subflow is not Vietoris closed.

Andy Zucker Ultracoproducts of G-flows



A new characterization of GPP Polish groups.

A Polish group G has the generic point property, or is GPP, if
M(G) has a comeager orbit.

Fact (Ben Yaacov, Melleray, Tsankov): If G is Polish and
M(G) is metrizable (i.e. G is CAP), then G is GPP.

Theorem (Basso-Z. 2023+)

Given a Polish group G, the following are equivalent.

G is GPP.

For any G-flow X and any Y ∈ MinG(X), Y contains a
unique minimal subflow.

For G = Aut(Q) and X = 2Q, the collection of subflows of X
containing a unique minimal subflow is not Vietoris closed.

Andy Zucker Ultracoproducts of G-flows



A new characterization of GPP Polish groups.

A Polish group G has the generic point property, or is GPP, if
M(G) has a comeager orbit.

Fact (Ben Yaacov, Melleray, Tsankov): If G is Polish and
M(G) is metrizable (i.e. G is CAP), then G is GPP.

Theorem (Basso-Z. 2023+)

Given a Polish group G, the following are equivalent.

G is GPP.

For any G-flow X and any Y ∈ MinG(X), Y contains a
unique minimal subflow.

For G = Aut(Q) and X = 2Q, the collection of subflows of X
containing a unique minimal subflow is not Vietoris closed.

Andy Zucker Ultracoproducts of G-flows



A new characterization of GPP Polish groups.

A Polish group G has the generic point property, or is GPP, if
M(G) has a comeager orbit.

Fact (Ben Yaacov, Melleray, Tsankov): If G is Polish and
M(G) is metrizable (i.e. G is CAP), then G is GPP.

Theorem (Basso-Z. 2023+)

Given a Polish group G, the following are equivalent.

G is GPP.

For any G-flow X and any Y ∈ MinG(X), Y contains a
unique minimal subflow.

For G = Aut(Q) and X = 2Q, the collection of subflows of X
containing a unique minimal subflow is not Vietoris closed.

Andy Zucker Ultracoproducts of G-flows



A new characterization of GPP Polish groups.

A Polish group G has the generic point property, or is GPP, if
M(G) has a comeager orbit.

Fact (Ben Yaacov, Melleray, Tsankov): If G is Polish and
M(G) is metrizable (i.e. G is CAP), then G is GPP.

Theorem (Basso-Z. 2023+)

Given a Polish group G, the following are equivalent.

G is GPP.

For any G-flow X and any Y ∈ MinG(X), Y contains a
unique minimal subflow.

For G = Aut(Q) and X = 2Q, the collection of subflows of X
containing a unique minimal subflow is not Vietoris closed.

Andy Zucker Ultracoproducts of G-flows



Towards a notion of weak containment

Definition

Given G-flows X and Y , we say that X is weakly contained in
Y and write X �G Y if X is a factor of an ultracopower of Y .
We say that X and Y are weakly equivalent and write X ∼G Y
if both X �G Y and Y �G X.

Despite the suggestive notation, it is far from obvious that �G

is transitive or that ∼G is an equivalence relation.

The problem: Given sets I and J , U ∈ βI, V ∈ βJ , and a
G-flow Z, need ΣG

UΣG
VZ
∼= ΣG

U⊗VZ. The former factors onto the
latter.
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A sufficient condition for ΣG
UΣG
VZ
∼= ΣG

U⊗VZ. Need to
understand G-continuity in more detail.

Fact: If X is a G-space, then f ∈ CG(X) iff there is some
continuous right-invariant pseudometric d on G such that f is
d-orbit-Lipschitz, i.e. ∀x ∈ X (|f(gx)− f(x)| ≤ d(g, 1G)).

Question (G-continuous Tietze extension)

Suppose Y ⊆ X are G-flows and that f ∈ Cb(Y ) is
d-orbit-Lipschitz. Is there f ′ ∈ Cb(Y ) extending f which is
d′-orbit-Lipschitz, where d′ only depends on d?
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A suggestive theorem with this flavor comes from work in
topometric spaces, i.e. (compact) topological spaces equipped
with a lower-semicontinuous metric.

Theorem (Ben Yaacov 2013)

If (X, ∂) is a compact topometric space, Y ⊆ X is a closed
subspace, and f ∈ Cb(Y ) is ∂-Lipschitz, then for any c > 1,
there is a c∂-Lipschitz f ′ ∈ Cb(X) extending f .

Problem: Given a G-flow X and a continuous, right-invariant
pseudometric d on G, the metric that d induces on X need not
be lsc.
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Definition

A topological group G is locally Roelcke precompact (LRPC) if
some idenity neighborhood is RPC. Fix an LRPC G.

d ∈ PsMr(G) is LRPC if d is bounded by 1 and Bd(1) is RPC.

A G-flow X is called weakly MHP if for every LRPC
d ∈ PsMr(G), the relation

∂d(x, y) ≤ c⇔ ∀A 3op x,B 3op y, ε > 0 (Bd(c+ ε) ·A ∩B 6= ∅)

defines a metric on X.

Every G-flow for G locally compact is weakly MHP. Every
MHP G-flow is weakly MHP. The class of weakly MHP G-flows
is closed under ultracoproducts.
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Definition

Let Y ⊆ X be G-flows. We call Y a fiber subflow of X if there
is a motionless G-flow Z, a G-map π : X → Z, and some z0 ∈ Z
with Y = π−1({z0}).

Theorem (Z. 2023+)

If G is LRPC, X is a weakly MHP G-flow, and Y ⊆ X is a
weakly MHP fiber subflow, then for any d ∈ PsMr(G), c > 1,
and d-orbit-Lipschitz f ∈ Cb(Y ), there is f ′ ∈ Cb(X) extending
f which is cd-orbit-Lipschitz.

The proof uses Ben Yaacov’s topometric Tietze extension
theorem as well as a relativized version of the characterization
of RPC groups as those with TTG(X) Vietoris closed.
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Corollary (Z. 2023+)

If G is an LRPC group, then on the class of weakly MHP
G-flows, weak containment is a pre-order and weak equivalence
is an equivalence relation.

In particular, if G is locally compact, then this holds for the
class of all G-flows.
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Thanks!
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